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Abstract

A Bayesian decision maker does not know which of several parameters is true.

In each period she chooses an action a from an open subset of Rn, observes an

outcome, and updates her beliefs. There is an action a
∗ that is uninformative

in the sense that when it is chosen all parameters give the same distribution over

outcomes, and consequently beliefs do not change. We give conditions under which

a policy specifying an action as a function of the current belief can result in a

positive probability that the sequence of beliefs converge to a belief at which a
∗ is

chosen, so that learning is asymptotically incomplete. Such a policy can be optimal

even when the decision maker is not myopic and values experimentation.

Keywords: Bayesian learning, information cascades, dynamic programming, stochas-

tic optimal control.

1 Introduction

Learning and experimentation are omnipresent in economic life. Firms need to design

new products and hire new employees, consumers have to choose menus and restaurants,

and politicians have to pick policies in an uncertain world. A natural and relevant
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question is under which conditions a decision maker will eventually learn, or fail to

learn, the truth.

This paper describes a fairly general and robust model of “learning traps,” by which

we mean situations in which an agent, or a group of agents, persistently choose actions

that are both suboptimal (for a fully informed agent) and uninformative, because the

costs of experimentation exceed the expected benefits. A Bayesian decision maker who

is uncertain about an underlying parameter begins each period with a belief, chooses an

action, and observes an outcome. There is a known relationship between the parameter,

the action, and the distribution of observations, and the belief at the beginning of the

next period is given by Bayesian updating. There is an action a∗ that is uninformative

in the sense that when it is chosen when it is optimal to do so the distribution over

outcomes is the same for all parameters, and consequently beliefs do not change.

The mechanism that leads to asymptotic incomplete learning in our setup is roughly

as follows. We suppose that there is a policy dictating the choice of action as a continuous

function of the current belief, and this policy dictates that a∗ is chosen at a critical belief

ω∗. Thus the amount of experimentation is small when the prior belief is near ω∗, which

makes it hard for the posterior to be much farther away from the critical belief than the

prior. At the same time, there can be a significant probability that the posterior is much

closer to the critical belief than the prior, resulting in slower learning. We show that

policies that allow such asymptotically incomplete learning can be optimal even when

the decision maker is not myopic and values experimentation.

Some of the oldest literature of on learning traps concerns multiarmed bandits (Git-

tens and Jones (1974), Berry and Fristedt (1985), and references therein). Rothschild

(1974) introduced this topic to economics, with subsequent contributions by McLennan

(1984), Kihlstrom et al. (1984), Easley and Kiefer (1988), Aghion et al. (1991), Smith

and Sørensen (2000), and others. Multiagent environments of this sort are studied by

Banerjee (1992) and Bikhchandani et al. (1992), and numerous subsequent papers. Mod-

els with this kind of feature have been applied to political economy (e.g., Piketty (1995))

regulation (e.g., Laslier et al. (2003) and Berentsen et al. (2008)), pricing in industrial or-

ganization (e.g. Harrison et al. (2011)) and law and economics (e.g., Baker and Mezzetti

(2011)). See Smith and Sørensen (2011) for a recent survey and summary.

From a mathematical point of view there are several reasons one might fail to experi-

ment. If the space of possible choices is discrete, as in the bandit literature (e.g., Gittens

and Jones (1974), Rothschild (1974), and Banks and Sundaram (1992)) and the literature

on information cascades (Banerjee (1992) and Bikhchandani et al. (1992)), there may be

a positive lower bound on the costs of experimentation in a single period. In addition,
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there may be switching costs (e.g., Banks and Sundaram (1994)) which loom large in

many labor market applications. When the space of actions has an uninformative action

on its boundary, the expected loss in the current period, and the amount of information

acquired resulting from moving away from that point will typically be proportional to the

distance moved (see Rothschild and Stiglitz (1984) for one formalization of this notion)

and in many setups it is easy to see that not experimenting is optimal when the future

is heavily discounted.

Finally, there is possibility that the relevant space of beliefs is (homeomorphic to) an

open subset of a Euclidean space, and that there is a positive probability that optimal

behavior will induce a sequence of beliefs that converges to a critical belief at which the

optimal action is uninformative. McLennan (1984) considered the case in which the space

of beliefs is one dimensional, because the unknown parameter has two possible values.

It is easy to construct examples in which there is an action that is uninformative, in

the sense that the distribution of outcomes does not depend on the unknown parameter

when it is chosen, and this action is chosen by the myopically optimal policy in response

to a certain critical belief. It can easily happen that the sequence of beliefs cannot go

from one side of the critical belief to the other, because the amount of experimentation is

never sufficient. McLennan (1984) showed that the optimal policy can have this property

even when the discount factor is positive. That is, even when the decision maker cares

about the future, it can be optimal to behave in a way that sometimes results in the true

value of the parameter remaining unknown in the limit.

The remainder has the following organization. In Section 2 we present a general

model of learning as a controlled Markov process: the state of the system is the belief

about an unknown parameter, there is a stationary policy function mapping the belief to

a space of actions, an outcome is observed, and Bayesian updating gives rise to a posterior

belief, which is the next period’s state. The first main result describes conditions on the

policy function under which there is a positive probability of incomplete learning in the

sense that the sequence of beliefs converges to a belief at which the action prescribed

by the policy is uninformative. Intuitively, the policy function will induce a positive

probability of convergence when the logarithm of the distance from the current belief

to the potential limit is a supermartingale when the belief is near the potential limit.

Section 3 develops a version of the law of large numbers that formalizes this intuition,

and uses it to prove the first main result. Although we have not found our particular

version of the law of large numbers elsewhere, the subject is certainly well explored, and

Appendix 1 of Ellison and Fudenberg (1995) and Appendix C of Smith and Sørensen

(2000) present similar results, so there seems to be little reason to think that this aspect
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of the work has a high degree of novelty.

The second main result is described informally at the end of Section 2, then stated

and proved in Section 5. The criterion for a positive probability of convergence given

by the first result requires that the policy map the critical belief to the uninformative

action, and that the derivative of the policy function satisfy certain conditions. We wish

to show that when these conditions are satisfied by the optimal myopic policy, they are

also satisfied by the optimal policy of a decision maker whose discount factor is positive

and small. In McLennan (1984) this aspect of the matter was handled in a concrete and

ad hoc manner, but here we give a general result providing conditions under which the

optimal policy varies continuously in the C1 topology (that is, both the policy and its

first derivative vary continuously) as we vary the discount factor near zero. The most

important hypotheses of this result are that the optimal myopic policy satisfies the second

order conditions strictly, and that the operator passing from a C2 value function for the

value of tomorrow’s state to the expected valued of tomorrow’s state, as a function of

today’s state and action, is continuous relative to the C2 topology. This result seems to

have considerable independent interest, and to the best of our knowledge it is novel, but

of course dynamic programming is also very well studied, so it would not be surprising

if these methods had already been developed elsewhere.

Our results require that the space of beliefs and the space of actions have the same

dimension. (Among other things, this allows the theory of the topological degree to be

used to show that policy functions that are near the myopic policy also map some belief to

the uninformative action.) The conditions identified by the first main result require that

a certain quantity be negative at every point in a sphere of one lower dimension. As we

mentioned above, when the spaces of beliefs and actions are one dimensional it is obvious

that the conditions of the first main result can be satisfied, but for higher dimensions

the issue is, at this point, unsettled. A related issue is the extent to which adopting a

policy of less aggressive experimentation increases the likelihood of incomplete learning.

Section 6 explains how to compute the relevant quantities, and considers a pertinent but

inconclusive example.

Section 7 discusses possible generalizations and extensions, thereby concluding the

paper.

2 Model

We first declare notation and conventions concerning probability. For any measurable

space S, let ∆(S) be the set of probability measures on S, and for s ∈ S let δs be the
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Dirac measure of s, i.e., the element of ∆(S) that assigns all probability to s. Whenever

S is a topological space it has the Borel σ-algebra, and ∆(S) is endowed with the weak∗

topology; recall that this is the weakest topology such that σ 7→
∫

S
f dσ is a continuous

function from ∆(S) to R whenever f : S → R is continuous and bounded. If S is

finite, elements of ∆(S) are treated as functions from S to [0,1], and ∆◦(S) is the set of

σ ∈ ∆(S) such that σ(s) > 0 for all s.

Let Θ be a finite set of possible values of a parameter θ̃ that the decision maker may

learn about over time. Then Ω = ∆(Θ) is the set of possible beliefs concerning θ̃. This

notation reflects a perspective in which the decision maker’s current belief is the state of

the system.

In each period the decision maker chooses an action from an open set A ⊂ R
n and

observes an outcome that is an element of a finite set Y . For each θ ∈ Θ there is a

function

qθ : A→ ∆◦(Y )

specifying a probability distribution over outcomes for each action. We always assume

that for each θ and y, qθ(y|·) : A → (0, 1) is continuous, and for the most part this

function will be C1. If ω ∈ Ω is a prior belief, action a is chosen, and outcome y is

observed, then the Bayesian posterior belief is β(ω, y, a) ∈ Ω with components given by

Bayes rule:

βθ(ω, a, y) =
ωθqθ(y|a)

∑

θ′∈Θ ωθ′qθ′(y|a)
.

We study stochastic processes {ω̃t}, {ãt}, and {ỹt} for dates t ≥ 0 with ω̃t+1 =

β(ω̃t, ãt, ỹt) almost surely for all t. We say that learning is asymptotically incomplete if

{ω̃t} does not converge to a point in { δθ : θ ∈ Θ }. When the prior belief is ω and action

a is chosen, there is a distribution B(ω, a) ∈ ∆(Ω) of the posterior belief given by

B(ω, a)(E) =
∑

θ

ωθqθ(a)
(

{ y ∈ Y : β(ω, a, y) ∈ E }
)

.

A general property of Bayesian updating is that the expectation of the posterior is the

prior:
∫

ω′dB(ω, a) = ω.

It follows that {ω̃t} is a martingale: conditional on ω̃t (and regardless of ãt) the ex-

pectation of ω̃t+1 is ω̃t. Consequently the martingale convergence theorem implies that

{ω̃t} converges almost surely, so there can be a positive probability of asymptotically

incomplete learning only if there is a positive probability of convergence to a belief at

which θ̃ is not known with certainty.
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For the most part we will assume that the choice of actions is governed by a stationary

policy function

p : Ω → A.

That is, for all t, it is almost surely the case that ãt = p(ω̃t). In this case B(ω̃t, p(ω̃t)) is

the distribution of ω̃t+1 conditional on ω̃t, so we may think of ω̃0, ω̃1, ω̃2, . . . as a stationary

Markov process.

We are primarily concerned with the possibility that there is a positive probability

that learning is asymptotically incomplete because the sequence ω̃t converges to an ω∗ ∈

∆◦(Θ). (Although we will eventually consider the possibility of convergence to a ω∗ whose

support is neither a singleton nor all of Θ, for the most part, and for the time being, we

will only consider the possibility that ω∗ has full support.) An action a∗ is uninformative

if qθ(a
∗) = qθ′(a

∗) for all θ, θ′ ∈ Θ. If a∗ is uninformative, then β(ω, a∗, y) = ω for all ω

and y, so that B(ω, a∗) = δω. If p(ω∗) is uninformative and ω̃t = ω∗, then it is almost

surely the case that ω̃s = ω∗ for all s ≥ t. There are examples in which this situation

arises with positive probability, but they are rather special.

The more interesting possibility is that there is a positive probability that ω̃t → ω∗

even though ω̃t 6= ω∗ for all t almost surely. If p is continuous, then the function ω 7→

B(ω, p(ω)) is continuous, so there cannot be a positive probability of convergence to an

ω∗ ∈ ∆◦(Θ) unless p(ω∗) = a∗ is uninformative. So suppose that p(ω∗) is uninformative.

There are now two main questions:

1) Under what conditions on p will there be a positive probability that ω̃t → ω∗?

2) When can we be certain that these conditions will be satisfied by the optimal policy

of a decision maker who maximizes the expectation of a sum
∑∞

t=0 δ
tR(at, yt) of

discounted rewards when δ is positive and sufficiently small?

Remark: Consider the possibility that, as in McLennan (1984), Ω is one dimensional,

because Θ = {θ1, θ2} has two elements. Let A be an open subset of R, let a∗ ∈ A be an

action that is uninformative, and let ω∗ be a belief such that p(ω∗) = a∗. Suppose that

ω̃0 = ω0 almost surely, where ω0 is between δθ1 and ω∗. It can easily happen that for

all t, ω̃t is almost surely between δθ1 and ω∗ because the action prescribed by p is never

informative enough to move the belief out of this interval. If this is the case, then the

sequence of beliefs will almost surely converge to either δθ1 or ω
∗, and, using the fact that

{ω̃t} is a Martingale, one can easily compute the probabilities of these limits conditional

on the actual parameter. Now suppose that the policy pδ maximizes the expectation of a

sum
∑∞

t=0 δ
tr(at, yt) of discounted rewards, where 0 ≤ δ < 1. It is not hard to construct
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examples in which p0 has all the features described above. McLennan (1984) showed

that it can happen that for all δ in some interval [0, δ), pδ also has all of these features.

This paper presents a more general and robust mechanism leading to asymptotic

incomplete learning. It is not limited to the case of two possible parameters, nor does

it depend on it being impossible to learn that the parameter has certain values. In

addition, sufficient conditions for positive probability of asymptotic incomplete learning

can easily be checked using the tools of calculus. We now describe the main features of

the mechanism informally and intuitively.

Of course ω̃t → ω∗ if and only if ln ‖ω̃t − ω∗‖ → −∞. The guiding intuition is that

the reasoning underlying the law of large numbers can be applied to the sum

ln ‖ω̃t − ω∗‖ − ln ‖ω̃0 − ω∗‖ =

t−1
∑

s=0

ln
‖ω̃s+1 − ω∗‖

‖ω̃s − ω∗‖
.

In order to do this we will need to provide sufficient information concerning

E

(

ln
‖ω̃t+1 − ω∗‖

‖ω̃t − ω∗‖

∣

∣

∣
ω̃t

)

when ω̃t is close to ω∗. When Ω is one dimensional and the process {ω̃t} is confined

one of the two intervals determined by ω∗, this expectation is always negative because

the process is a martingale and the logarithm function is concave. Thus the mechanism

developed here encompasses the phenomenon identified by McLennan (1984).

Let H = {ω ∈ R
Θ :

∑

θ ωθ = 1 } be the hyperplane in R
Θ that contains Ω, and let

S = { σ ∈ R
Θ : ‖σ‖ = 1 and

∑

θ

σθ = 0 }

be the unit sphere in the hyperplane through the origin parallel to H . Any ω ∈ H has a

representation of the form ω = ω∗ + rσ where σ ∈ S and r ≥ 0, and this representation

is unique if ω 6= ω∗.

Set

Ξ = { (σ, r) ∈ S × (0,∞) : ω∗ + rσ ∈ Ω } and Ξ = Ξ ∪ (S × {0}).

Let κ : Ξ× Y → Ω be the function

κ(σ, r, y) = β(ω∗ + rσ, p(ω∗ + rσ), y).

From this point forward we assume that p and the functions qθ(y|·) are C
1. Elementary

calculus implies that ∂κ
∂t

is a well defined continuous function from Ξ to the hyperplane

through the origin parallel to H . We define ψ : Ξ× Y → H by setting

ψ(σ, r, y) =

{

ω∗ + 1
r
(κ(σ, r, y)− ω∗), (σ, r) ∈ Ξ,

ω∗ + ∂κ
∂r
(σ, 0, y), r = 0.
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Clearly ψ is continuous at every point of Ξ, and the restriction of ψ to S × {0} is also

continuous. If {(σn, rn)} is a sequence of points in Ξ converging to (σ, 0) and y ∈ Y ,

the intermediate value theorem implies that for each n there is a r′n ∈ (0, rn) such that

ψ(σn, rn, y) = ω∗ + ∂κ
∂t
(σn, r

′
n, y), so the continuity of ∂κ

∂r
implies that ψ(σn, tn, y) →

ψ(σ, 0, y). Thus ψ is continuous.

We define a function Bp : Ξ → ∆(H) by letting Bp(σ, r) be the element of ∆(H) that

assigns probability
∑

θ

(ω∗
θ + rσθ)qθ(y|p(ω

∗ + rσ))

to each ψ(σ, r, y). Clearly Bp is continuous.

Our first main result is as follows. The proof is given at the end of Section 3, after

the supporting statistical result has been developed.

Theorem 1. If, for all σ ∈ S,
∫

H
ln ‖ω − ω∗‖ dBp(σ, 0) < 0, then for any sufficiently

small neighborhood U of ω∗, if the probability that ω̃0 ∈ U is positive, then there is a

positive probability that ω̃t → ω∗.

Turning to the second question, we now consider the problem of maximizing the

expectation of
∞
∑

t=0

δtu(ω̃t, ãt)

where u : Ω×A→ R is a continuous function. In many applications u(ω, a) will be the

expectation of a reward function R : A× Y → R:

u(ω, a) =
∑

θ

ωθ

∑

y

R(a, y)qθ(y|a).

Our second main result, which is stated and proved at the end of Section 5, has the

following intuition: under natural and easily verified conditions, the optimal policy pδ,

and its derivative, will vary continuous as δ varies in a neighborhood of zero. Provided

that the dimension of Ω is the same as the dimension of A, it follows from the theory of

the degree that for small δ > 0, some point near ω∗ is mapped to a∗. Since choosing a∗

minimizes learning, it cannot be optimal to do so for positive δ unless it is also myopically

optimal, so we have pδ(ω
∗) = a∗ for small positive δ. Since the derivative of p varies

continuously with δ, if
∫

H
ln ‖ω−ω∗‖ dBp0(σ, 0) < 0 for all σ ∈ S, then for small positive

δ it is also the case that
∫

H
ln ‖ω − ω∗‖ dBpδ(σ, 0) < 0 for all σ ∈ S.
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3 Bounds on Escape Probabilities

For the analysis in the section, prior to the proof of Theorem 1, (Ω,F) may be any

measurable space. Let ∆(Ω) be the set of probability measures on Ω. We study a

stationary Markov process ω̃0, ω̃1, ω̃2, . . . in Ω with Markov kernel P : Ω → ∆(Ω). That

is, for all E ∈ F , P (E|·) : Ω → [0, 1] is measurable, and for all ω0, . . . , ωt we have

Pr(ω̃t+1 ∈ E|ω̃0 = ω0, . . . , ω̃t = ωt) = P (E|ωt).

(More formally, (ω1, . . . , ωt) 7→ P (·|ωt) is a version of conditional probability for the

distribution of of (ω̃1, . . . , ω̃t, ω̃t+1).) Let ℓ : Ω → R be a measurable functions. We study

conditions on P and ℓ that imply that there is a positive probability that the sequence

ℓ(ω̃0), ℓ(ω̃1), ℓ(ω̃2), . . . never gets above zero, in which case ℓ(ω̃t) → −∞ almost surely.

We begin with a technical result:

Lemma 1. Let x̃ be a random variable with cumulative distribution function Φ. If

E(eγx̃) <∞ for some γ > 0 and E(x̃) < 0, then there exist C, β > 0 such that

1− Φ(−y) < Ceβy(1−

∫ −y

−∞

eβxΦ(dx))

for all all β ∈ (0, β) and y ≤ 0.

Proof. One can easily show that for any M > 0,

E(eγx̃| −M ≤ x̃ ≤M)

γ
→ eE(x̃|−M≤x̃≤M)

as γ → 0, and from this it follows easily that there is a β > 0 such that E(eβx̃) < 1 for

all all β ∈ (0, β). We can now choose

C = sup
0≤β≤β,−∞<y≤0

(1− Φ(−y))e−βy

1−
∫ −y

−∞
eβx Φ(dx)

.

This supremum is not infinite because (1−Φ(−y))e−βy → 0 as y → −∞, since otherwise

E(eβx̃) = ∞.

Proposition 1. Suppose that Φ1, . . . ,ΦK : R → [0, 1] are cumulative distribution func-

tions such that:

(a) For each k, if x̃k is distributed according to Φk, then E(x̃k) < 0.

(b) for each ω ∈ Ω such that ℓ(ω) < 0 there is some k such that P ({ω′ ∈ Ω : ℓ(ω′) ≥

ℓ(ω) + x}|ω) ≤ 1− Φk(x) for all x ∈ R.
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Then there are C, β > 0 such that for all ω0 with ℓ(ω0) < 0 we have

Pr(ℓ(ω̃t) → −∞|ω̃0 = ω0) = Pr(ℓ(ω̃t) < 0 for all sufficiently large t|ω̃0 = ω0)

≥ Pr(ℓ(ω̃t) < 0 for all t|ω̃0 = ω0) > 1− Ceβℓ(ω0).

Proof. In view of Lemma 1, there are C, β > 0 such that

1− Φ(−y) < Ceβy
(

1−

∫ −y

−∞

eβx Φk(dx)
)

(∗)

for all all k and y ≤ 0. For each T = 0, 1, 2, . . . let pT : Ω → [0, 1] be the function

pT (ω0) = Pr
(

ℓ(ω̃T ) ≥ 0 for some t = 0, . . . , T | ω̃0 = ω0

)

.

It suffices to show that for a given ω0 such that ℓ(ω0) < 0 we have pT (ω0) ≤ Ceβℓ(ω0)

for all T . This is obviously true when T = 0, so, by induction, we may suppose that it

has already been established with T − 1 in place of T . As per (b), choose k such that

P ({ω′ ∈ Ω : ℓ(ω′) ≥ ℓ(ω) + x}|ω) ≤ 1− Φk(x) for all x ∈ R. Then

pT (ω0) = P ({ω : ℓ(w) ≥ 0}|ω0) +

∫

{ω:ℓ(ω)<0}

pT−1(ω)P (dω|ω0)

≤ 1− Φk(−ℓ(ω0)) +

∫ −ℓ(ω0)

−∞

Ceβ(ℓ(ω0)+x) Φk(dx)

= 1− Φk(−ℓ(ω0)) + Ceβℓ(ω0)
(

∫ −ℓ(ω0)

−∞

eβx Φk(dx)− 1
)

+ Ceβℓ(ω0).

Now (∗) implies that pT (ω0) ≤ Ceβℓ(ω0).

Proof of Theorem 1. For each σ ∈ S, if ω is distributed according to Bp(σ, 0), then the

expectation of ln ‖ω− ω∗‖ is negative. Since Bp(σ, 0) has finite support, we can define a

distribution on R by assigning the same probabilities to numbers slightly larger than the

ln ‖ω−ω∗‖, so that the mean of this distribution is negative. Then for any (σ′, r′) in some

neighborhood of (σ, 0) in Ξ, this distribution also first order stochastically dominates the

distribution of ln ‖ω − ω∗‖ when ω is distributed according to Bp(σ
′, r′). Since S is

compact, it follows that there is a finite collection of neighborhoods that covers S×{0}.

The union of these neighborhoods is a neighborhood of S × {0}, so it contains S × [0, r]

for some r > 0. Let ℓ : Ω \ {ω∗} → R be the function

ℓ(ω) = ln ‖ω − ω∗‖ − ln r.

At this point we have verified the hypotheses of Proposition 1, and it implies the desired

conclusion.
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4 Manifolds with Corners

We will apply methods from differential topology, but the most important example for

our purposes, namely the simplex, is not a manifold with boundary. It is a manifold

with corners, which is a slightly more general concept that is much less popular in the

mathematical literature. This section describes the relevant concepts, which are standard

(cf. Hirsch (1976)) in this setting.

Fix a degree of differentiability 1 ≤ r ≤ ∞. We first recall that an m-dimensional Cr

manifold is a topological space M together with a collection {ϕg : Ug → R
m
≥}g∈G where

{Ug} is an open cover of M , each ϕg is a homeomorphism between Ug and ϕg(Ug), each

ϕg(Ug) is an open subset of Rm, and all the maps ϕg ◦ ϕ
−1
g′ are Cr on their domains of

definition. The collection {ϕg : Ug → R
m
≥}g∈G is said to be a Cr atlas for M .

Recall that for any D ⊂ R
m, a function f : D → R is differentiable if there is a

differentiable extension of f to an open superset of D. We say that D is a differentiation

domain if, for any differentiable f : D → R and any two differentiable extensions f ′ :

U ′ → R and f ′′ : U ′′ → R, the derivatives of f ′ and f ′′ agree at all points of D. For

example, the positive orthant Rm
≥ is a differentiation domain.

Anm-dimensional Cr manifold with corners is a topological spaceM with a collection

{ϕg : Ug → R
m
≥}g∈G where now each ϕg(Ug) is an open subset of Rm

≥ , and, as above, {Ug}

is an open cover of M , each ϕg is a homeomorphism between Ug and ϕg(Ug), and all the

maps ϕg ◦ ϕ
−1
g′ are Cr on their domains of definition. The collection {ϕg : Ug → R

m
≥}g∈G

is said to be a Cr atlas for M . A set D ⊂ M is a differentiation domain if, for each

g ∈ G, ϕg(D ∩ Ug) is a differentiation domain.

The simplex provides a simple concrete example: let Ω = { (x0, . . . , xm) ∈ R
m+1 :

∑

g xg = 1 }. A C∞ atlas for Ω is given by letting Ug = { x ∈ Ω : xg > 0 } for each

g = 0, . . . , m, and letting ϕg : Ug → R
m
≥ be the map

ϕ(x) = (x0, . . . , xg−1, xg+1, . . . , xm).

Suppose that D ⊂M is a differentiation domain. If 0 ≤ s ≤ r, a function f :M → R

is said to be Cs if each map f ◦ ϕ−1
g : ϕg(D ∩ Ug) → R is Cs. Let Cs(D) be the space of

such maps.

Now suppose that D is compact. We wish to define suitable metrics on the spaces

Cs(D). Suppose that K1, . . . , KL is a collection of compact subsets ofM whose interiors

cover D, and for each ℓ = 1, . . . , L there is a gℓ ∈ {1, . . . , G} such that Kℓ ⊂ Ugℓ . For

f, f ′ ∈ Cs(D) let

dDs (f, f
′) = max

∣

∣

∣

∣

∂s(f ◦ ϕ−1
gℓ
)

∂xi1 · · ·∂xit
(ϕgℓ(p))−

∂s(f ′ ◦ ϕ−1
gℓ
)

∂xi1 · · ·∂xit
(ϕgℓ(p))

∣

∣

∣

∣
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where the maximum is over all ℓ = 1, . . . , L, p ∈ Kℓ, t = 0, . . . , s, and i1, . . . , it =

1, . . . , m. It is easy to verify that dDs is a metric.

Note that dDr is the metric derived from the norm

‖f‖ = max
ℓ,p,s,i1,...,is,j

∣

∣

∣

∣

∂s(ψhℓj ◦ f ◦ ϕ−1
gℓ
)

∂xi1 · · ·∂xis
(ϕgℓ(p))

∣

∣

∣

∣

.

Consequently dDr respects multiplication by scalars in the sense that dD(αf, αf ′) = |α| ·

dD(f, f ′) for all α ∈ R. It is well known that with this norm Cr(D) is complete and thus

a Banach space.

In addition to defining topologies, these metrics provide a notion of what it means

for a function between these spaces to be locally Lipschitz. For general metric spaces

(X, d) and (Y, e) a function f : X → Y is Lipschitz at x ∈ X if there is a neighborhood

U of x and a Λ > 0 such that e(f(x′), f(x′′)) ≤ Λd(x′, x′′) for all x′, x′′ ∈ U , and f is

locally Lipschitz if it is Lipschitz at each point in X . Of course the metric dDs depends

on the atlases, the sets Kℓ, and the integers gl, and whether a function to or from

Cs(D) is locally Lipschitz must not depend on this data. A composition of two locally

Lipschitz functions is locally Lipschitz, so this follows from the fact that if dDs and d̃Ds

are two such metrics, then the identity function is locally Lipschitz when the domain

has the metric d
(M,N)
s and the range has metric d̃

(M,N)
s . The ideas underlying the proof

of this (intersections of compact sets are compact, the chain rule, continuous functions

with compact domains are bounded) are elementary, but a detailed description of the

argument would be rather cumbersome, so we leave the verification to the reader.

Let Cs(D,Rn) denote the n-fold cartesian product of Cs(D), and let the metric d
(D,Rn)
s

be defined by

d(D,Rn)
s (f, f ′) = dDs (f1, f

′
1) + · · ·+ dDs (fn, f

′
n).

If U ⊂ R
n is open, let Cs(D,U) be the set of f ∈ Cs(D,Rn) with f(D) ⊂ U . Usually

we write C(D) in place of C0(D) and C(D,U) in place of C0(D,U).

5 Perturbation Methods

In this section we analyze a dynamic programming problem, aiming at results stating that

the optimal policy function and the value function vary continuously, in the topologies

described in the last section, as the discount factor δ varies in a neighborhood of δ = 0.

Let the space of states Ω be a compact m-dimensional C2 manifold with corners, and

let the space of actions A be an open subset of Rn. Then A is a C2 manifold, hence a

C2 manifold with corners, and the cartesian product of two C2 manifolds with corners
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is easily seen to be another C2 manifold with corners, so Ω × A is a C2 manifold with

corners. Let D ⊂ Ω×A be a compact differentiation domain. For each ω ∈ Ω let D(ω)

be the set of a such that (ω, a) ∈ D. In what follows we will be concerned only with

maximization over the setsD(ω). In applications the relevant notion of maximization will

often extend over all of A, and the particular context will determine the considerations

that insure that the local maximizers analyzed below are in fact global optima.

Let u0 : D → R be a C2 function whose second order derivatives are Lipschitz

functions. We assume that for each ω ∈ Ω there is a unique maximizer pu0
(ω) of u0(ω, ·) :

D(ω) → R such that (ω, a) is in the interior of D and the second order necessary

conditions for maximization hold strictly. We begin the analysis by studying how the

optimal policy and the value vary when we perturb u0 in C2(D).

There is an operator J that maps C(D) to real valued functions on Ω that is defined

by setting

J(u′)(ω) = max
a∈D(ω)

u′(ω, a).

Proposition 2. There is a neighborhood W ⊂ C2(D) of u such that:

(a) For each u′ ∈ W and each ω there is a unique maximizer pu′(ω) of u′(ω, ·) that is in

the interior of A, at which the second order necessary conditions for maximization

hold strictly.

(b) For each u′ ∈ W , pu′ : Ω → A is C1.

(c) The operator u′ 7→ pu′ is a locally Lipschitz function from W to C1(Ω, A).

(d) J(W ) ⊂ C2(Ω).

(e) J |W is locally Lipschitz.

Proof. Consider a particular ω ∈ Ω. For any neighborhood of pu(ω), if u
′ is sufficiently

close to u in the metric dD0 , then all the maximizers of u′(ω, ·) will lie in that neigh-

borhood. By choosing this neighborhood appropriately, one can insure that if u′ is

sufficiently close to u in the metric dD2 , then there will be a unique point in the neighbor-

hood at which the first order conditions are satisfied, with the second order conditions

holding strictly. Thus, if u′ is sufficiently close to u in the metric dD2 , then (a) holds, and

(b) follows from the implicit function theorem.

Using the fact that the second order conditions hold strictly, it is easy to see that

the map u′ 7→ pu′ is Lipschitz when u′ is sufficiently close to u in the metric dD2 and the

range has the metric d
(Ω,A)
0 .
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In order to simplify the notation, for the rest of the proof we assume that Ω = A =

[0, 1]. It will be clear that all the steps in the argument generalize in a straightforward

manner. Fully differentiating the equation

∂u′

∂a
(ω, pu′(ω)) = 0

and rearranging gives

dpu′

dω
(ω) = −

∂2u′

∂ω∂a
(ω, pu′(ω))

∂2u′

∂a2
(ω, pu′(ω))

.

We can now decompose the difference between dpu
dω

and
dp

u′

dω
into two parts: i) the con-

sequence of replacing pu(ω) with pu′(ω) in the expression above; ii) the consequence

of replacing the various second partial derivatives of u with the corresponding second

partials of u′. As for i), it is bounded by a multiple of dD2 (u
′, u) because d

(Ω,A)
0 (pu′, pu)

is bounded by a multiple of this distance (as we noted above) and the second partials

of u are Lipschitz by assumption. Of course ii) is bounded by a constant multiple of

dD2 (u
′, u) because this distance bounds the differences in the relevant second partials,

and the expression above is a locally Lipschitz function of these partials. Thus (c) holds.

We have

Vu′(ω) = u′(ω, pu′(ω)),

V ′
u′(ω) =

∂u′

∂ω
(ω, pu′(ω)),

V ′′
u′(ω) =

∂2u′

∂ω2 (ω, pu′(ω)) · ∂2u′

∂a2
(ω, pu′(ω))− ∂2u′

∂ω∂a
(ω, pu′(ω))2

∂2u′

∂a2
(ω, pu′(ω))

,

by virtue of, respectively, the definition of Vu′ , the envelope theorem, and total differ-

entiation of the second equation followed by substituting the formula for
dp

u′

dω
above.

Evidently Vu′ is C2, so (d) holds. In addition, an argumnent similar to the one given

above decomposing the differences between V ′
u and V ′

u′ and between V ′′
u and V ′′

u′ into the

effects of replacing pu with pu′ and the effects of replacing u with u′ establishes (e).

Let q : Ω × A → ∆(Ω) be a given continuous function. The dynamic program is to

maximize the expectation of
∞
∑

t=0

δtu(ω̃t, ãt)

where ω̃0 = ω0 almost surely, ω̃t is known at the time ãt is chosen, and, conditional on

ω̃t and ãt, ω̃t+1 has the distribution q(ω̃t, ãt). Let V0(ω0) = u(ω0, pu) be the value of this

problem when δ = 0.
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We analyze this using the standard methodology of dynamic programming, by ana-

lyzing the value of the problem as a function of ω0. There is an operator

K : C(Ω) → C(Ω× A) given by K(V )(ω, a) =

∫

Ω

V (·) dq(ω, a).

Proposition 3. Assume there a neighborhood Z ⊂ C2(Ω) of Vu such that K(Z) ⊂

C2(Ω× A) and K|Z is Lipschitz. Then there is a δ > 0 such that if 0 ≤ δ < δ, then the

optimal policy pδ : Ω → A is C1. In addition, the map δ 7→ pδ is Lipschitz relative to the

metric d
(Ω,A)
1 .

Proof. After replacing W from Proposition 2 with a smaller neighborhood of u, we may

assume that J(W ) ⊂ Z. For δ ∈ R let Lδ : W → C2(Ω) be the operator

Lδ(u
′) = u+ δ ·K(J(u′)).

Since dΩ and dD respect multiplication by scalars, there is a δ > 0 and a constant

λ ∈ (0, 1) such that for all δ ∈ (0, δ), Lδ is a contraction with modulus of contraction

at most λ. Since C2(Ω × A) is a Banach space, and consequently complete, in this

circumstance Lδ must have a fixed point uδ. Let pδ be the optimal policy function for

the discounted problem with discount factor δ. A standard argument based on iteratively

applying the operator Lδ′ to uδ shows that the map δ 7→ uδ is Lipschitz with Lipschitz

constant 1/(1 − λ). In view of the last result, it follows that the map δ → pδ is also

Lipschitz.

We can now state and prove the second main result.

Theorem 2. Suppose that for each ω ∈ Ω, p0(ω) is the unique maximizer of u(ω, ·),

and that the second order conditions for maximization hold strictly there. Assume that
∫

H
ln ‖ω − ω∗‖ dBp0(σ, 0) < 0 for all σ ∈ S. Assume also that there is a compact

neighborhood D ⊂ Ω × A of the graph of p0 that is a differentiation domain and an

ε > 0 such that u(ω, a) < u(ω, p0(ω)) − ε for all (ω, a) ∈ (Ω × A) \ D. Assume there

a neighborhood Z ⊂ C2(Ω) of Vu such that K(Z) ⊂ C2(Ω × A) and K|Z is Lipschitz.

Finally, assume that the dimension of Ω is the same as the dimension of A, and that the

derivative of p0 at ω∗ is nonsingular. Then there is a δ > 0 such that for all δ ∈ [0, δ),

the optimal policy pδ is C
1, pδ(ω

∗) = a∗, and
∫

H
ln ‖ω−ω∗‖ dBpδ(σ, 0) < 0 for all σ ∈ S.

Proof. If we restricted the decision maker to policies with graphs lying in D, all the

results above would be available. But in fact it is not hard to show that the assumption

that actions outside of D(ω) are myopically ε-suboptimal implies, for sufficiently small

δ > 0, that the optimal policies with graphs lying in D are, in fact optimal.
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Therefore δ → pδ is continuous when the range has the C1 topology. By the theory

of the degree, continuity relative to the C0 topology implies that for sufficiently small δ

there will be some point near ω∗ that is mapped to a∗. Since a∗ minimizes learning, it

cannot be optimal for small positive δ unless it is also myopically optimal, and since the

derivative of p0 at ω∗ is nonsingular, it follows that we must have pδ(ω
∗) = a∗ for small

δ > 0.

Since pδ varies continuously with δ in the C1 sense, Bpδ(σ, 0) is jointly continuous

as a function of δ and σ, and from this it follows that for small positive δ we have
∫

H
ln ‖ω − ω∗‖ dBpδ(σ, 0) < 0 for all σ ∈ S.

6 Applying the Results

In this section we explain how Bp(·, 0) is computed. This computation is required by

any concrete application of the result. In addition, we are able to analyze the extent

to which increasing the amount of experimentation affects the probability of falling into

the learning trap. When Ω and A are 1-dimensional, it is easy to see that learning traps

are in fact possible, but when the common dimension is greater than one it is unclear

whether it can actually happen that
∫

H
ln ‖ω − ω∗‖ dBp0(σ, 0) < 0 for all σ ∈ S. We

analyze an example which provides an inconclusive result.

Let q(y|a∗) denote the common value of qθ(y|a
∗), which is the probability of observing

y when the uninformative action a∗ is chosen. For σ ∈ S and y ∈ Y let

ρθ(σ, y) =
1

q(y|a∗)
·
∂qθ(y|p(ω

∗ + rσ))

∂r

∣

∣

∣

r=0
.

Using elementary calculus, it is not hard to show that

ψ(σ, 0, y) = ω∗ + σ + ν(σ, y)

where the components of the vector ν(σ, y) are

νθ(σ, y) = ρθ(σ, y)− ω∗
θ

∑

θ′∈Θ

ρθ′(σ, y).

Then Bp(σ, 0) assigns probability q(y|a
∗) to each ψ(σ, 0, y).

A common intuition is that more aggressive experimentation will result in fewer

learning traps and a lower probability of falling into one. One way to think about this

is to consider replacing p with another policy pα mapping ω∗ to a∗ whose derivative at

ω∗ is the derivative of p multiplied by the scalar α > 0. This replacement results in the

numbers ρθ(σ, y) and the vector ν(σ, y) being multiplied by the same scalar. For large
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values of α we have ‖σ+αν(σ, y)‖ > ‖σ‖ for all y, in which case ω∗ is “repelling” rather

than “attracting.”

It is also interesting to consider what happens when α is small. Consider two vectors

v and w in the hyperplane through the origin parallel to H with ‖v‖ = 1. If g(s) =

ln ‖v + sw‖, then, by elementary calculus,

g′(s) =
〈v + sw, w〉

‖v + sw‖2

and

g′′(s) =
‖v + sw‖2 · ‖w‖2 − 2〈v + sw, w〉2

‖v + sw‖4
,

so that g′(0) = 〈v, w〉 and g′′(0) = ‖w‖2 − 2〈v, w〉2. In view of these results we have

d
( ∫

H
ln ‖ω − ω∗‖ dBpα(σ, 0)

)

dα

∣

∣

∣

α=0
=

∑

y

q(y|a∗)〈σ, ν(σ, y)〉 = 0

and

d2
( ∫

H
ln ‖ω − ω∗‖ dBpα(σ, 0)

)

dα2

∣

∣

∣

α=0
=

∑

y

q(y|a∗)
(

‖ν(σ, y)‖2 − 2〈σ, ν(σ, y)〉2
)

. (∗)

This finding suggests that when there is already a small amount of experimentation as one

moves away from ω∗, the effect of further reducing experimentation, by replacing p with

pα where α < 1, is primarily to slow the process down, without changing the probability

of eventual convergence to ω∗. If we think of the process as akin to a Brownian motion,

the result of the replacement is to multiply the drift and the instantaneous variance by

α2; as Callander (2011) points out in a setting with Brownian motion, the result of such

a replacement is a rescaling of the process that does not change its limiting properties.

The last result is also interesting from a different point of view. When Ω and A are 1-

dimensional, the right hand side of (∗) reduces to −
∑

y q(y|a
∗)‖ν(σ, y)‖2 because ν(σ, y)

is necessarily a scalar multiple of σ. Thus, in this case, there is a positive probability of

convergence to ω∗ when α is sufficiently small. When n ≥ 2 this is no longer the case,

and in fact a very interesting question is for which values of n can it be the case that

the right hand side of (∗) is negative for all σ ∈ S.

We now analyze a concrete example. Let Θ = {θ1, θ2, θ3}, let A be the interior of Ω,

let p be the identity function, and let ω∗ = (1
3
, 1
3
, 1
3
). Let Y = {y1, y2, y3}, and let

qθi(yj|a) =

{

1
3
+ 2

3
(ai −

1
3
), i = j,

1
3
− 1

3
(ai −

1
3
), i 6= j.
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Then
∂qθ(y|p(ω

∗ + rσ))

∂r

∣

∣

∣

r=0
=

{

2
3
σi, i = j,

−1
3
σi, i 6= j.

We compute that
∑

i

ρθi(σ, yj) = σj

because σ1 + σ2 + σ3 = 0. Therefore

νθi(σ, yj) =

{

σi, i = j,

−σi − σj , i 6= j.

Since −σ1 − σ2 = σ3, and similarly in the other cases, we have

ν(σ, y1) = (σ1, σ3, σ2), ν(σ, y2) = (σ3, σ2, σ1), ν(σ, y3) = (σ2, σ1, σ3).

Now we have

∑

y

q(y|a∗)
(

‖ν(σ, y)‖2−2〈σ, ν(σ, y)〉2
)

= 1− 2
3

(

(σ2
1+2σ2σ3)

2+(σ2
2+2σ1σ3)

2+(σ2
3+2σ1σ2)

2
)

= 1− 2
3

(

∑

i

σ4
i + 4

∑

i

σi(σ1 + σ2 + σ3) + 4
∑

j 6=k

σ2
jσ

2
k

)

= 1− 2
3

(

∑

i

σ4
i + 4

∑

j 6=k

σ2
jσ

2
k

)

= 1− 2
3

(

(σ2
1 + σ2

2 + σ2
3)

2 + 2
∑

j 6=k

σ2
jσ

2
k

)

= 1
3
− 4

3

∑

j 6=k

σ2
jσ

2
k = −1

3
+ 2

3
(σ4

1 + σ4
2 + σ4

3).

(The last equality follows from σ2
1σ

2
2 +σ

2
1σ

2
3 = σ2

1(−σ
2
1) and symmetric equations.) Some

manipulation of the equations

(σ2
1 + σ2

2 + σ2
3)

2 = 1 and (σ1 + σ2 + σ3)
4 = 0

shows that σ4
1 + σ4

2 + σ4
3 = 1

2
is a consequence of these equations. Thus

d2
( ∫

H
ln ‖ω − ω∗‖ dBpα(σ, 0)

)

dα2

∣

∣

∣

α=0
= 0

for all σ ∈ S. One could attempt to push the analysis further by looking at the third

and fourth derivatives, or one could turn to other examples. With respect to this issue,

this draft is indeed “preliminary and incomplete.”
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7 Concluding Remarks

We have provided an analysis of Bayesian learning traps that gives sufficient conditions

for them to occur, and we have shown that if myopically optimal policies allow them,

then so do the optimal policies of decision makers with small positive discount factors. A

major unresolved issue is whether these conditions can actually occur in multidimensional

settings.

Our analysis in this paper is restricted in several ways.

A natural direction of generalization is to situations in which the dimension of the set

of uninformative actions is a submanifold of A of positive dimension, and the dimension

of the space of beliefs may be greater than the codimension of the set of uninformative

actions. When these objects and the policy function are “well behaved,” the set of beliefs

mapped to uninformative actions will be a submanifold of Ω, and the question becomes

whether there can be a positive probability that the sequence of beliefs converges to a

point in this submanifold. One can anticipate certain additional technical complications,

but at this point there seems to be little reason to expect the qualitative properties of

the results to change.

A major direction for generalization is to consider the possibility that Y is infinite. In

particular, the case of normally distributed shocks is a central concern. Again, significant

additional complications can be foreseen, but at this point we are not aware of any

insuperable obstacles.

Finally, an economically important possibility is that learning might be incomplete

because there is a positive probability of convergence to a belief whose support is not

all of Θ. As with the other extensions described above, this appears to present certain

challenges, which most likely can be overcome.
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